Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 142-148, 2023.
Article in Chinese | WPRIM | ID: wpr-973143

ABSTRACT

ObjectiveTo investigate the mechanism of Renshen Guben oral liquids(RGOL) in treatment of mice with renal fibrosis based on metabolomics and network pharmacology. MethodC57BL/6 mice were randomly divided into control group, model group and RGOL group, 12 mice in each group. Except for the control group, mice in the other groups were induced into unilateral ureteral obstruction(UUO) model by UUO. After preparation of the model, an aqueous solution of 4.2 g·kg-1 extract powder was administered by gavage to RGOL group for 14 d, and an equal amount of distilled water was administered by gavage to the control and model groups. After the last administration on the 14th day, urine was collected and detected by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) with 0.1% formic acid aqueous solution as mobile phase A, and acetonitrile-isopropanol(70∶30) as mobile phase B for gradient elution(0-1 min, 5%B; 1-5 min, 5%-30%B; 5-9 min, 30%-50%B; 9-11 min, 50%-78%B; 11-13.5 min, 78%-95%B; 13.5-14 min, 95%-100%B; 14-16 min, 100%B; 16-16.1 min, 100%-5%B; 16.1-18 min, 5%B), column temperature of 40 ℃, flow rate of 0.4 mL·min-1, electrospray ionization(ESI), collection range of m/z 50-900. Through network pharmacology, the targets of components in RGOL and the targets of renal fibrosis were analyzed interactively, and the key components and key targets were screened by network topology analysis, and DAVID platform was used to predict the signaling pathways of RGOL for the treatment of renal fibrosis. ResultA total of 7 differential metabolites involving 8 metabolic pathways were identified in RGOL for the treatment of renal fibrosis. The network pharmacology revealed that 36 key components in RGOL were related to 7 differential metabolites, mainly ginsenosides, notoginsenosides and nucleotides. Based on the herbs-components-targets-pathways network, a total of 23 key targets related to the treatment of renal fibrosis by RGOL were highlighted, which together with the differential metabolites were involved in linoleic acid metabolism, arginine biosynthesis, tricarboxylic acid cycle(TCA), arginine and proline metabolism and other pathways. ConclusionBased on metabolomics and network pharmacology, this study preliminarily identified 7 differential metabolites, 36 potential pharmacodynamic components and 23 key targets and 4 key pathways in RGOL for the treatment of renal fibrosis, providing an experimental basis for the clinical application and mechanism study of this preparation.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 199-205, 2020.
Article in Chinese | WPRIM | ID: wpr-873300

ABSTRACT

Objective::The processing method of red ginseng was determined by comparing the effects of different steaming time and pressure on the total content of six ginsenosides. Method::The contents of ginsenoside Rg1, Re, Rf, Rb1, Rc and Rb2 were determined by ultra high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS). The Waters ACQUITY UPLC BEH C8 column (2.1 mm×100 mm, 1.7 μm) was used. The mobile phase was 0.1% formic acid aqueous solution (A) and 0.1% formic acid acetonitrile solution (B) for gradient elution (0-4 min, 81%-79%A; 4-6.3 min, 79%-75%A; 6.3-6.5 min, 75%-71%A; 6.5-9.5 min, 71%A; 9.5-16.5 min, 71%-68.5%A; 16.5-16.6 min, 68.5%-60%A; 16.6-19 min, 60%-100%A). The flow rate was set at 0.4 mL·min-1 and the column temperature was set at 35 ℃. The mass spectrographic analysis employed electrospray ionization (ESI) and negative ion collection mode with capillary ionization voltage of 2.5 kV, desolvation temperature of 350 ℃, desolvation gas flow of 700 L·h-1 and cone gas flow of 50 L·h-1. Multiple reaction monitoring (MRM) mode was used to collect information, the collection range was m/z 100-1 500, detection was performed by MRM mode at m/z 799.59-637.49 for ginsenoside Rg1, m/z 945.54-475.79 for ginsenoside Re, m/z 799.59-475.49 for ginsenoside Rf, m/z 1 107.59-783.97 for ginsenoside Rb1, m/z 1 077.58-783.96 for ginsenoside Rc, m/z 1 077.75-191.19 for ginsenoside Rb2. Result::When the steaming time was 3 hours, the total mass fraction of six ginsenosides in each sample group was 7.099 8-16.768 5 mg·g-1, and the total amount of the six ginsenosides in atmospheric steaming was 2.5-12.6 times of that in pressurized steaming, which was obviously better than that in pressurized steaming. Conclusion::Under the conditions of this experiment, the best processing method of red ginseng is atmospheric steaming for 3 hours with fresh ginseng.

SELECTION OF CITATIONS
SEARCH DETAIL